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Abstract. A lattice model of a hetero-polymer with random hydrophilic-hydrophobic charges interacting
with the solvent is introduced, whose continuum counterpart has been proposed by Garel, Leibler and
Orland [7]. The transfer matrix technique is used to study various constrained annealed systems which
approximate at various degrees of accuracy the original quenched model. For highly hydrophobic chains an
ordinary θ-point transition is found from a high temperature swollen phase to a low temperature compact
phase. Depending on the type of constrained averages, at very low temperatures a swollen phase or a
coexistence between compact and swollen phases are found. The results are carefully compared with the
corresponding ones obtained in the continuum limit, and various improvements in the original calculations
are discussed.

PACS. 05.70.Fh Phase transitions: general aspects – 61.41.+e Polymers, elastomers, and plastics –
64.75.+g Solubility, segregation, and mixing; phase separation – 75.10.Nr Spin-glass and other random
models

1 Introduction

The main reason for the study of random hetero-polymers
in solutions, is a possible connection of this problem with
the protein folding problem [1–3]. Indeed, proteins are be-
lieved to be by nature selected special cases of random
hetero-polymers. Before dealing with these special cases,
it is of great importance to understand the typical be-
haviour of the various kinds of random hetero-polymer
models that have been introduced, as it may give impor-
tant insight in which types of interactions are indispensible
for folding, and which types of interactions, on the other
hand, are of secondary importance.

Several models of (quenched) randomness have been
considered. Here, we study the role of the solvent (water)
in the equilibrium [4] properties of the collapsed phase,
as it is commonly believed that the hydrophobic effect
[5] is the main driving force for the folding transition.
Most proteins in nature consist of a strongly hydropho-
bic core, surrounded by hydrophilic (less hydrophobic)
residues. We restrict ourselves to the simple coarse grained
model, that was originally introduced by Obukhov [6],
where the monomers of a single chain are randomly hy-
drophilic or hydrophobic (RHH), and interact with the
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solvent molecules through an effective two-body short
range interaction. The statics of the continuum version
of this model has been studied by Garel et al. [7], both
in the case of annealed and quenched disorder, while the
dynamics (with quenched disorder) has been studied by
Thirumalai et al. [8]. The model has been studied also by
Timoshenko et al. [9] and Moskalenko et al. [10] with the
Gaussian self-consistent method.

We have choosen to study a (2d square) lattice ver-
sion of the RHH model, and the method we used to assess
the conformational entropy, is the transfer matrix (TM)
method, which is most fit to study the case of annealed dis-
order. Furthermore, using the approximation scheme in-
troduced by Morita [11], we are able to give lower bounds
for the quenched free energy. It will turn out that the an-
nealed case may exhibit a very rich phase diagram and
re-entrant compact-swollen transitions, and we come to
different conclusion than Garel et al. [7]. The case of the
annealed average with fixed mean for the hydrophobic-
hydrophilic charges, gives the same results one can get in
the continuum limit for the quenched average using the
method of reference [7] (see Sect. 7 for details). We go
one step forward analyzing a better approximation to the
quenched system which cures some problems present in
the previous approximations and in the standard approach
presented in [7].
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This work is built up in the following way. In Section 2,
we introduce the model in more detail. In Section 3, we
introduce the concept of constrained annealing; in Sec-
tion 4 we show that the effective models after averaging
over the disorder involve 2- and 3-body interactions and
the general phase diagram of such kind of models is dis-
cussed. In Section 5, the TM method is used to assess the
conformational entropy of the polymer chain. The results
are presented in Section 6, together with an outlook of the
items that are still to be investigated. Finally, in Section 7
we give an interpretation of our results, and a detailed
comparison with those obtained for the continuum model
by [7].

2 Definition of the model

The polymer chain is represented by a self-avoiding walk
(SAW) on a lattice where each site is either visited by
the walk (i.e. is occupied by one monomer of the chain),
or occupied by a solvent molecule. The interactions in the
model are two-body short-range interactions. The only in-
teractions we take into account, are those between solvent
molecules and monomers if they occupy nearest-neighbor
sites. Hydrophilicities λi are attached to each monomer i
of the walk such that the Hamiltonian is given by

H = −
N∑
i=0

λizi, (1)

where the sum runs over the N+1 sites of the lattice occu-
pied by the N -step walk, and zi is the number of nearest-
neighbor contacts of monomer i with solvent molecules,
i.e. the number of nearest-neighbor sites of site i not oc-
cupied by the walk.

The hydrophilicities λi are supposed to be independent
identically distributed random variables with a Gaussian
distribution with mean λ0 and variance λ:

P (λi) =
1

√
2πλ2

exp

(
−

(λi − λ0)2

2λ2

)
, (2)

and the average over this (a priori) distribution is indi-
cated by 〈〈·〉〉 . If λi > 0, the corresponding monomer
is hydrophilic and attracts solvent molecules, whereas if
λi < 0, the monomer is hydrophobic and repels solvent
molecules.

The canonical partition function for SAW of N steps
with a fixed disorder configuration {λi} is then

ZN ({λi}) =
∑
WN

exp

(
β

N∑
i=0

λizi

)
, (3)

where the sum has to be taken over all N -step SAW start-
ing from the origin.

If monomers can rearrange themselves along the chain
and change their hydrophilicities, e.g. with chemical re-
actions, these have to be considered as thermal an-
nealed variables, which approach equilibrium in the same

time scale as the configurational degrees of freedom. The
physics of such hetero-polymers is given by the average of
the partition function over the disorder distribution (an-
nealed average)

〈〈ZN ({λi})〉〉 =
∑
WN

exp

(
βλ0

N∑
i=0

zi +
β2λ2

2

N∑
i=0

z2
i

)
. (4)

Instead, if the monomer sequence of the chain is fixed, as
it is the case for proteins, the hydrophilicities are frozen
while the polymer is approaching thermal equilibrium; the
average over the disorder distribution has then to be taken
over the logarithm of the partition sum (quenched aver-
age) [12], to yield the quenched free energy

fq = −
1

β
〈〈ln[ZN ({λi})]〉〉 , (5)

which is a much harder task to accomplish.

3 Constrained annealing

In order to avoid the difficult direct computation of the
quenched average (5), we have applied an idea first intro-
duced by Morita [11]. This is the so-called Equilibrium
Ensemble Approach (EEA) (see e.g. [13] for a recent re-
view and discussion). The EEA consists of a systematic
approximation procedure for the quenched free energy by
annealed averages. It can be shown [13] that each succes-
sive approximation gives a better or equally good lower
bound for the quenched free energy.

Each approximation consists in performing an
annealed average over a new Hamiltonian H∗ ≡ H +Hd,
where H is the original Hamiltonian (1), and Hd is a fic-
titious disorder potential, which contains a number of pa-
rameters. These parameters (Lagrange multipliers) have
to be tuned in such a way that some moments of the
a posteriori (annealed) distribution of the disorder are
equal to the a priori (quenched) ones. In annealed aver-
ages, the a posteriori distribution P ∗({λi}, {zi}) is defined
as

P ∗({λi}, {zi}) ≡
P (λi) exp(−βH∗({λi}, {zi}))

〈〈Z∗N 〉〉
· (6)

The average over this distribution will be denoted by 〈·〉 ≡∫
d{λi}

∑
WN

P ∗({λi}, {zi})·. In principle, one has to fix
all the moments of P ∗ann({λi}) ≡

∑
WN

P ∗({λi}, {zi}) to
obtain the quenched result, which is as difficult as the
direct computation of (5). Nevertheless, one can hope to
obtain a reasonable approximation of the quenched case
by fixing a few suitably chosen moments. Moreover, the
method is variational, and fixing more and more moments
yields thighter lower bounds for the quenched free energy.

In this work, we have considered three different cases
of annealing: without constraints (a0), constraining the
first moment of overall hydrophilicity (a1), constraining
the first and the second moment of overall hydrophilicity
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(a2). For all these cases, we obtain the same formal ex-
pression for the effective homo-polymer partition function

Zeff
N =

∑
WN

exp

[
Nβ0 + β1

∑
i

zi + β2

∑
i

z2
i

]
, (7)

and any further complexity is hidden in the computation
of β0, β1 and β2 for the different cases. The strategy we
will follow, is to study the general homo-polymer model
defined by (7), in the (β1, β2)-plane (the β0 dependence
being trivial). Then, we investigate to which temperature
dependent trajectories in the (β1, β2)-plane, the three an-
nealed averages give rise.

In case (a0), the simple annealed average (4) has al-
ready been computed in the preceding section, and equa-
tion (7) is recovered with the definitions

β0 = 1, β1 = βλ0, β2 =
1

2
β2λ2. (8)

We can immediately argue from equations (7) and (8) that
even hydrophobic chains (λ0 < 0) will be swollen at low
enough temperature. Indeed, since β2 � |β1| as β → ∞,
the repulsive β2

∑
i z

2
i term causes the number of contacts

with solvent to be maximized, independently of the sign
and the value of λ0.

In case (a1), we fix the a posteriori overall hydrophilic-
ity
∑
i λi/N to its a priori value λ0:

〈
∑
i λi〉

N
= λ0. (9)

We impose this constraint by defining a generalized parti-
tion function Za1

N ({λi}, ĥ) which depends on the Lagrange

multiplier ĥ, and by finding the effective value ĥ∗ for which
(9) holds:

Za1

N ({λi}, ĥ)=
∑
WN

exp

[
β
∑
i

λizi−βĥ

(∑
i

λi−Nλ0

)]
.

(10)

We recover (7) with the following definitions

β0 =
β2λ2ĥ2

2
, β1 = βλ0 − β

2λ2ĥ, β2 =
β2λ2

2
· (11)

In terms of ĥ, condition (9) becomes

ĥ∗ =
〈
∑
i zi〉 (ĥ

∗)

N
, (12)

and the free energy fa1 is thus given by

fa1 = −
1

βN
ln
〈〈
Za1

N (ĥ∗)
〉〉
. (13)

Note that the quenched free energy computed in the con-
tinuum model by Garel et al. [7], is exactly the free energy
fa1 (13), if one performs the annealed average with con-
straint (9) within the analytic calculation scheme of refer-
ence [7]. We will comment on this in the final discussion
of Section 7.

In case (a2), in addition to (9), we also put a constraint
on the overall variance

∑
i(λi − λ0)2/N :〈∑

i λ
2
i

〉
N

= λ2 + λ2
0. (14)

In the same way as before, we introduce a second Lagrange
multiplier ŝ, and we define a generalized partition function

Za2

N ({λi}, ĥ, ŝ) =
∑
WN

exp

[
β
∑
i

λizi−βĥ

(∑
i

λi −Nλ0

)

−
βŝ

2

(∑
i

λ2
i −N(λ2 + λ2

0)

)]
. (15)

After performing the average, we recover (7) with the fol-
lowing definitions

β0 =
1

2

(
β2λ2

s′
(ĥ+λ0ŝ)

2+βλ2ŝ−ln s′
)
,

β1 =
βλ0−β2λ2ĥ

s′
, β2 =

β2λ2

2s′
s′ = 1+βλ2ŝ. (16)

Conditions (9) and (14) yield two coupled equations for

ĥ∗ and ŝ∗ with solution:

ĥ∗ + λ0ŝ
∗ = ∆2(ĥ∗, ŝ∗), (17)

ŝ∗ =

√
1 + 4β2λ2(∆3(ĥ∗, ŝ∗)−∆2

2(ĥ∗, ŝ∗))− 1

2βλ2
, (18)

where ∆2 ≡ 〈
∑
i zi〉 /N and ∆3 ≡

〈∑
i z

2
i

〉
/N . In the

next section, we will show that ∆2 and ∆3 are closely
connected to effective 2-, respectively 3-body interactions
between the monomers. The free energy fa2 is now given
by

fa2 = −
1

βN
ln
〈〈
Za2

N (ĥ∗, ŝ∗)
〉〉
. (19)

As mentioned before, it can be shown [13] that at any
temperature fa0 ≤ fa1 ≤ fa2 ≤ ... ≤ fq. Hence, fixing
more and more moments, we get a better approximation
for the quenched free energy.

4 Phase diagram

We now discuss the phase diagram of the model defined
in (7), in the (β1, β2)-plane, with β0 constant:

Zeff
N = C

∑
WN

exp

[
β1

∑
i

zi + β2

∑
i

z2
i

]
. (20)

The number zi of nearest-neighbor contacts of monomer
i (not at the chain ends) with solvent molecules can be
expressed in terms of the number ni of nearest-neighbor
monomers of monomer i not along the chain using
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Fig. 1. Qualitative phase diagram in the (β1,β2) plane: the
solid line is the tri-critical θ-line which ends in the multi-critical
point; the dashed line is the coexistence line.

ni = 2(d−1) − zi, where we have exploited the incom-
pressibility condition. In this way the quantities

∑
i zi and∑

i z
2
i can be related to effective 2-body and 3-body in-

teractions between the monomers. We define N2 to be
the number of nearest-neighbor 2-monomer contacts not
along the chain, while N3 is the number of nearest 3-
monomer contacts not along the chain. On a hypercubic
lattice in IRd, we have a nearest 3-monomer contact when
two monomers are both nearest neighbors (not along the
chain) to the third monomer and we have that

N2 =

∑
i ni

2
, N3 =

(
∑
i n

2
i−
∑
i ni)

2
· (21)

In terms of N2 and N3, the reduced Hamiltonian can be
rewritten

−βHeff = 2(d−1)[β1 + 2(d−1)β2]N

− [2β1 + 2(4d−5)β2]N2 + 2β2N3. (22)

Since β2 ≥ 0 for the models that we have considered, the
3-body term is either attractive or absent. Note that β2

enters also in the 2-body term with a repulsive effect; as
already noted, the total contribution of the β2 term in
equation (20) has to be repulsive. We recall that the self-
avoidance constraint automatically introduces effective n-
body repulsive terms, with n = 2, 3, 4 and so on.

For β2 = 0, we have a self-avoiding walk with only 2-
body interactions, each of energy 2β1/β. For these models,
the existence of a critical value β∗1 < 0 at which the chain
undergoes a second order θ-transition, is well-known [15–
17]. The transition takes place when the 2-body attrac-
tive interaction exactly balances the 2-body steric repul-
sion. For β1 > β∗1 , the chain is in the swollen phase, while
for β1 < β∗1 , the chain is in the collapsed phase. The θ-
point is a tri-critical point [18] corresponding to a φ6 field
theory with a Landau-Ginzburg functional; the necessary
stabilizing 3-body term is provided by the self-avoidance
constraint.

When β2 > 0, the attractive 3-body term 2β2N3 com-
petes with the corresponding steric repulsion. At the mean
field level [14], with increasing β2, a tri-critical line departs
from the θ-point at β2 = 0. The tri-critical line ends at a

Fig. 2. Mean number of monomer-solvent close contacts
∆2 (β1, β2) at varying β1 for different fixed values of β2, with
strip width from 2 to 6. The compact-to-swollen transition is
continuous for β2 < βm2 and first order for β2 > βm2 , with the
(very raw) estimate βm2 ' 0.75.

multi-(tetra-)critical point (βm1 , β
m
2 ), when the 3-body at-

tractive interaction exactly balances the steric repulsion.
This corresponds to a φ8 Landau-Ginzburg theory, since
the necessary stabilizing 4-body term is provided by the
self-avoidance constraint. Increasing β2 further, the tran-
sition line becomes a coexistence line between the swollen
and the compact phase. This phase diagram is qualita-
tively sketched in Figure 1.

At zero temperature, when the entropy is negligible
with respect to the energy, we can give rigorous results
for the asymptotic behavior of the coexistence line. If
a = β1/β2 is fixed and β2 →∞, we can rewrite the Hamil-
tonian

−βHeff =β2

∑
i

(azi + z2
i )=−Nβ2

a

4
+ β2

∑
i

(a
2

+ zi

)2

.

(23)

Since 0<zi< 2(d−1), for a>−2(d−1), the ground state
is at zi = 2(d−1) for any i, and the walk is swollen.
On the other hand, for a<−2(d−1), the ground state is
at zi = 0 for any i, and the walk is maximally compact.

For a=−2(d−1) (i.e. β1 ∼ −2(d−1)β2), the energy of
the two competing ground states is the same, and there is
phase coexistence.

The presence of a multi-critical point, if not rigorously
proved, is numerically established, as one can see from
Figure 2, where the order parameter ∆2(β1, β2) is plotted
as a function of β1 for different values of β2.
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Camacho and Schanke [19], using exact enumerations,
have obtained a phase diagram which exhibits similar fea-
tures as our. A transition line between the swollen and
the collapsed phase is present, which is first order at low
temperatures, and becomes second order at higher tem-
peratures through a multi-critical point. However, they
treat the quenched case and describe a slightly different
model (i.e. the HP-model). A translation of this model
in terms of hydrophobic charges would introduce an ex-
tra interaction term which depends on the product of the
charges, and is absent in our model.

5 Transfer matrix

We have addressed the numerical study of the lattice
model defined by (7), by the transfer matrix technique on
a two-dimensional square lattice. With this method it is
possible to consider infinite polymers on a lattice of finite
width (strip) [20–22]. The price to pay is the uncertain
extrapolation of the thermodynamic limit, caused by the
limited width of the strip that we can achieve.

In a grand-canonical context, the generalized two point
correlation function is defined as

G(x, r, β1, β2) =
∞∑
N=1

∑
WN

xN exp

[
β1

∑
i

zi + β2

∑
i

z2
i

]
,

(24)

where x is the step fugacity and the second sum runs over
the SAW of N steps which connect the origin with an
arbitrary point at distance r. We have neglected the de-
pendence on β0 because it only affects a simple rescaling of
fugacity. The two-point correlation function decreases ex-
ponentially in r at long distances, if x is less than the crit-
ical fugacity xc(β1, β2). This defines the correlation length
ξ(x, β1, β2):

G(x, r, β1, β2) ∼ exp

(
−

r

ξ(x, β1, β2)

)
. (25)

The correlation length ξn(x, β1, β2) can be calculated ex-
actly on a lattice strip of infinite length and finite width
n, with the TM method. The idea is to write recursion
relations between a strip of length r and a strip of length
r+1. We consider a walk on the strip, which goes from
the left to the right, and we cut the strip at column r.
The local configuration at r is then given by the set of
occupied sites of column r and how these are connected
to each other by the part of the walk at the left of r. Since
the interaction β2

∑
i z

2
i gives rise to effective 3-body in-

teractions, it is necessary to define the local configurations
at stage r taking the lattice bonds occupied by the walk
between the columns r−2 and r into account. We combine
all the possible local configurations i at column r, with all
the possible local configurations j at column r+1. They
yield a non-zero TM element Tij if it is possible to connect
them, without producing disconnected pieces, and Tij is

          r-2  r-1  r    r+1          r-2  r-1  r    r+1                                  

(a) (b)

Fig. 3. Example of a transfer matrix element. Empty cir-
cles are solvent molecules and dashed lines show the nearest-
neighbor monomer-solvent contacts. Configuration i is defined
at column r and takes into account how the walk steps back to
column r − 2 (solid line in (b)). Configuration j is defined at
column r + 1 and takes into account how the walk steps back
to column r − 1, and thus, partially overlaps with configura-
tion i. The dotted line in (b) shows the non overlapping part
of configuration j. In this example the quantities needed for
the computation of the matrix elements (26) are tij = 5 and
zij = (0, 0, 2, 0, 2, 0) (the sites of column r−1 are ordered from
the top to the bottom of the strip).

given by

Tij = xtij exp

[
β1

n∑
α=1

zijα + β2

n∑
α=1

(zijα )2

]
; (26)

where tij is the number of occupied bonds between
columns r−1 and r, and zijα is the number of non occupied
nearest-neighbor sites of the site at row α and column r−1,
if this is occupied by the walk (see Fig. 3).

The number of possible configurations, and therefore
the computational effort, can be strongly reduced by con-
sidering periodic boundary conditions (the strip becomes
a cylinder) and then by exploiting all the symmetry prop-
erties of the strip. Furthermore, periodic boundary con-
ditions reduce the finite size effects. In this way, within
reasonable time, we are able to study strip widths up to
n = 6, corresponding to 5387 configurations and 154 149
non-zero matrix elements.

The correlation function can be expressed in terms of
the trace of the rth power of the TM T :

G(x, r, β1, β2) ∼ Tr T r, (27)

and the correlation length (25) is related to the largest
eigenvalue λmaxn (x, β1, β2) of T , for a strip of width n:

ξn(x, β1, β2) = −
1

lnλmaxn (x, β1, β2)
· (28)

The critical fugacity xnc is determined by the value at
which the correlation length diverges, i.e.

λmaxn (xnc , β1, β2) = 1. (29)

The computation of the free energy per monomer f =

− lnZeff
N /(βN) and of any other quantity of physical in-

terest (e.g. the mean number of monomer-solvent contacts
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∆2), is now straightforward in terms of the critical fugac-
ity:

f =
1

β
lnxc, ∆2 = −

∂ lnxc
∂β1

, ∆3 = −
∂ lnxc
∂β2

·

(30)

The thermal exponent ν, which characterizes the diver-
gence of the correlation length at the critical fugacity:
ξ ∼ (xc − x)−ν , is a good indicator of a collapse tran-
sition. A SAW in two dimensions has the value ν = 3/4
in the swollen phase [23], ν = 1/2 in the collapsed phase
and ν = 4/7 on the tri-critical line [24,25].

In order to compute the thermal exponent, we first
calculate the density ρn(β1, β2) of monomers in the strip

ρn(β1, β2) = −
xnc (β1, β2)

n

∂ξ−1
n (xnc , β1, β2)

∂x
· (31)

Then, we use a phenomenological renormalization (PR)
group procedure [26,27] to obtain finite size estimates for
the thermal exponent; the underlying hypothesis is the
finite size scaling behavior [28] of the correlation length
for n�1 and (xc − x)�1:

ξn (x, β1, β2) = n g
[
n1/ν (xc − x) , β1, β2

]
, (32)

where g is a scaling function. Using the single strip critical
fugacity estimate (29) leads to

νn,n−1 =

(
ln(ρn/ρn−1)

ln(n/(n− 1))
+ 2

)−1

· (33)

Note that we compare the derivative of the correlation
length at criticality for two consecutive strip widths, but
criticality is determined in a different way for different
widths.

This is not the most accurate way of applying the ideas
of the PR. In fact, the critical fugacity can be determined
for two consecutive widths at once by

ξn
(
xn,n−1
c , β1, β2

)
n

=
ξn−1

(
xn,n−1
c , β1, β2

)
n− 1

· (34)

This estimate is better than (29) and the thermal expo-
nent can easily be obtained

νn,n−1 =(
ln(

∂ξn(xn,n−1
c ,β1,β2)
∂x

/
∂ξn−1(xn,n−1

c ,β1,β2)
∂x

)

ln(n/(n− 1))
− 1

)−1

. (35)

Nevertheless, we have used the rougher formulae (29) and
(33), because solving (34) numerically, is a much harder
task, especially in proximity of coexistence.

6 Results

We will show that the trajectory that the system follows in
the (β1, β2)-plane, for the different models with decreasing

Fig. 4. Mean number of monomer-solvent close contacts ∆2,n

and thermal exponent νn,n−1 at varying temperature, with
strip width n from 2 to 6, in the case of unconstrained an-
nealing with λ0 = −1 and λ = 0.7. Evidence is provided for a
second order swollen-to-compact θ-transition (see the crossings
of different n-estimates of the thermal exponent around the θ-
value νθ ' 0.57), and for a first order compact-to-swollen tran-
sition (see the abrupt jump of the order parameter ∆2,n). The
thermal exponent strongly fluctuates at the first order tran-
sition due to the phenomenological renormalization method
employed for its calculation.

temperature, only depends on the fraction λ0/λ ≡ λeff .
The position on the trajectory at a given temperature,
however, does depend on λ0 and λ separately. Although
the trajectories can not be calculated analytically, we give
a general qualitative picture, which will be confirmed by
the numerical data.

The maximum strip width avalaible, n = 6, is rather
small. Nevertheless, the data in the various plots already
show a nice convergence, and we think that the obtained
results are reliable. Moreover, we are mainly interested in
qualitative features of the phase diagram and not in pre-
cise quantitative values of critical exponents or transition
temperatures.

6.1 Simple annealing (a0)

After elimination of the temperature in (8), the locus of
the trajectory in the (β1, β2)-plane is given by the equation

ga0(β1, β2) ≡ β2 −
λ2

eff β
2
1

2
= 0, (36)

which describes a parabola. As the temperature is posi-
tive, the (β1>0)-branch of this parabola has to be consid-
ered, for λeff >0, while the (β1<0)-branch is relevant for
λeff <0. Hence, at sufficiently low temperature, the chain
will be always swollen, no matter how strongly hydropho-
bic λeff is (i.e. λeff < 0). We note here that the oppo-
site result, i.e. even highly hydrophilic chains are compact
at sufficiently low temperature, has been found by Garel
et al. [7] in the corresponding continuum model, due to
improper consideration of the incompressibility condition.
This condition is automatically accounted for in the defi-
nition of our lattice model.
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The typical behaviour for a strongly hydrophobic chain
(λeff �−1) is as follows. At high temperatures, it will be
swollen for entropic reasons. Then with decreasing tem-
perature, it will undergo a 2nd order θ-transition from
swollen to collapsed. Finally, at even lower temperature,
it will undergo a 1st order collapsed to swollen transition.
We present a numerical evidence of this remarkable re-
entrant behaviour in Figure 4: the crossings of the various
n-estimates of the thermal exponent are typical of θ-point
[16] and are just around the value νθ ' 0.57, and the jump
of the order parameter ∆2 = 〈

∑
i zi/N〉 provides strong

evidence for the first order transition from the compact
to the swollen phase; the value of the compact phase be-
ing ∆2 ' 0, and in the swollen phase ∆2 ' 2. We have
thus shown that considering 3-body interaction does not
change the universality class of the θ-transition, as long as
one is referring to the tri-critical line. Although not sur-
prising, this result is not trivial in two dimensions. A more
interesting theoretical question concerns the value of the
thermal exponent in d = 2 at the multi-critical point, but
the TM approach employed here, is uneffective because of
the limited strip width we are able to study.

We note here that we have considered the overall
hydrophilicity λ0 to be constant. The chemical reac-
tions that give rise to annealed hydrophilicities, however,
may be temperature dependent and may cause λ0 to vary
with temperature [29]. Nevertheless, the re-entrant behav-
ior is a quite robust feature: even when λ0 diverges expo-
nentially to −∞ (λ∗0<0) with a rate α>0

λ0 (β) = λ∗0 exp (αβ) , (37)

re-entrant behavior is still observed for α not too big.

6.2 Fixing the mean (a1)

After elimination of the temperature in (11), the locus of
the trajectory in the (β1, β2)-plane is given by the equation

ga1(β1, β2) ≡ β1 −
√

2β2λeff + 2β2∆2(β1, β2) = 0, (38)

which has to be combined with condition (12) (fixing the
mean)

∆2(β) ≡ ∆2(β1, β2) =
1

N

∂ lnZeff
N (β1, β2)

∂β1

=
1

N

〈∑
i

zi

〉
(β1, β2). (39)

First, we show that equation (38) defines a unique trajec-
tory βtr1 (β2). It is easy to see that ∂ga1/∂β1 > 0, ∀β1, β2.
Hence, we can apply the implicit function theorem, but
only if β2 < βm2 , when ga1(β1, β2) is a continuous function
of its arguments. For β2 > βm2 , ga1(β1, β2) (in particu-
lar ∆2), is discontinuous on the coexistence line βco1 (β2).
Since the discontinuity is developed in the thermodynamic
limit, and since ∂ga1/∂β1 > 0 for any finite N , the only

possibility at coexistence is gsw ≡ ga1(β1 ↓ βco1 (β2), β2) >
gc ≡ ga1(β1 ↑ βco1 (β2), β2) (the chain is collapsed for
β1 < βco1 (β2) and swollen otherwise). If gsw and gc have
the same sign, (38) is still uniquely satisfied far away from
coexistence. Instead, if gsw>0 and gc<0, (38) can only be
satisfied on the coexistence line. In this case, a fraction fc
of the chain is collapsed and the remaining fraction 1− fc
is swollen, so that physical mean values are mixtures of
the pure phase values:

∆2(β) = fc ∆2,c(β) + (1−fc) ∆2,sw(β). (40)

Thus, equation (38) becomes a condition on fc:

fc gc + (1−fc) gsw = 0. (41)

We now prove that at zero temperature (β2 → ∞) the
only way to satisfy (38) for the chain, is to be at the

coexistence line with fc =
1

2
, i.e. half collapsed and half

swollen, independently of the value of λeff , as far it is kept
fixed. For β1/a ' β2 →∞, (38) becomes

a+ 2∆2(∞) = 0. (42)

As we have seen at the end of Section 4, for a > −2
the chain is swollen, and ∆2,sw(∞) = 2, but (42) implies
a = −4 which is a contradiction. Similarly for a<−2, the
chain is compact and ∆2,c(∞) = 0, implying a=0. Hence,
the only remaining possibility is a=−2, i.e. coexistence
of the swollen and the compact phase:

∆2(∞) = fc∆2,c + (1−fc)∆2,sw, (43)

where fc is the collapsed fraction of the chain at coex-

istence. Plugging this in (42), yields fc =
1

2
, such that

∆2(∞) = 1.
The phase separation already occurs at finite temper-

ature, since condition (38) implies that ∆2(β1, β2) is a
continuous function along the trajectory, and since the
only way to reach the value ∆2(∞) = 1 continuously, is
to move along the coexistence line.

All this, in combination with the numerical data, gives
the following qualitative scenario of what happens lower-
ing the temperature:
• There exists a particular value λm<0 such that for

λeff = λm the trajectory passes through the multi-critical
point, and then follows the coexistence line.
• For λeff > λm, the trajectory hits the coexistence

line coming from the swollen phase, and this will hap-
pen further away from the multi-critical point the larger
λeff −λm is. Then, it follows the coexistence line, and the
collapsed fraction (fc) of the chain steadily increases to

become
1

2
at zero temperature.

• For λeff < λm, the trajectory hits the coexistence
line coming from the compact phase. This means that
the chain first collapses with a 2nd order θ-transition, be-
fore the trajectory hits the coexistence line. Then, it fol-
lows the coexistence line, and the collapsed fraction (fc)
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Fig. 5. Mean number of monomer-solvent close contacts ∆2,n

at varying temperature, with strip width n from 2 to 5, in
the fixed mean case. The behavior of the order parameter is
the same (swollen at high temperature and then θ-transition
to the collapsed phase) as in the annealed case (see Fig. 3)
until coexistence starts at β ' 1.7 and ∆2,n starts increasing
slowly; the asymptotic (β →∞) value is ∆2 = 1. The behavior
of the thermal exponent is the same as in the annealed case
until coexistence starts. At coexistence the thermal exponent
should be the same as in the swollen phase, as far as a finite
fraction of the chain is swollen, but due to limited numerical
precision we get higly fluctuating values.

Fig. 6. Trajectories in the (β1,β2) plane for different values of
λeff in the fixed mean case, with strip width n = 5. The tran-
sition line has been located at the crossing of two consecutive
n-estimates of ∆2 (see Fig. 2).

of the chain steadily decreases to become
1

2
at zero tem-

perature.

This qualitative scenario is confirmed by the numerical
evidence shown in Figures 5 and 6. They respectively show
the numerical results for the trajectory in the (β1, β2)-
plane, and the variation of the order parameter ∆2(∞)
with temperature.

6.3 Fixing the mean and the variance (a2)

Using (17) and (16), we obtain λβ = (β1 + 2∆2β2)/λeff ≡
χ > 0, and the locus of the trajectory in the (β1,β2) plane
is given by the following equation

ga2(β1, β2) ≡
χ2

2β2
−

1

2

√
1

4
+ χ2 (∆3 −∆2

2) = 0, (44)

where ∆2(β) is defined as in (39), and

∆3(β) ≡ ∆3(β1, β2) =
1

N

∂ lnZeff
N (β1, β2)

∂β2

=
1

N

〈∑
i

z2
i

〉
(β1, β2). (45)

The qualitative behaviour of the trajectories in the phase
plane is very similar to that of the previous subsection.
The collapsed fraction fc of the chain, however, does de-
pend on λeff at zero temperature. In order to show this, we
repeat the same argument as before. For β1/a ≡ β2 →∞,
condition (44) simplifies to

a+ 2

(
∆2(∞)− λeff

√
∆3(∞)−∆2

2(∞)

)
= 0, (46)

which is the analogous of equation (42). For a >−2 the
chain is swollen and ∆2,sw(∞) = 2, ∆3,sw(∞) = 4, but
(46) implies a=−4 which is a contradiction. For a <−2
the chain is collapsed, and ∆2,c(∞) = ∆3,c(∞) = 0 leads
to a = 0. Again, we conclude that the chain is at coexis-
tence at zero temperature, but in this case using (43) and
the analogous formula for ∆3(∞), we get the following
condition for the collapsed fraction fc of the chain:

fc =
1

2

1−
λeff√

1 + λ2
eff

 . (47)

In Figure 7 the numerical results are shown for the vari-
ation of the order parameter ∆2 with temperature. The
analogous of Figure 6 with the trajectories in the (β1, β2)-
plane turns out to be indistinguishable from Figure 6 it-
self, and is therefore not shown.

The behaviour of the chain seems qualitatively un-
changed adding the constraint on the variance with re-
spect to the fixed mean case. It can easily be verified that
for λ0 = 0 equations (38) and (44), defining the trajec-
tories in the (β1, β2)-plane, are equal, and they are qual-
itatively very similar for λ0 6= 0. If we compare the free
energies (13) and (19), however, taking the proper values
of β0 into account, we find that the constraint on the vari-
ance is crucial for the low temperature behaviour of the
free energy. In the fixed mean case (like in the simple an-
nealed case), the free energy diverges linearly to −∞ with
β, whereas fixing also the variance yields a finite free en-
ergy. The divergence can easily be understood. A fraction
(all, in the simple annealed case) of the monomers want to
be as hydrophilic as possible and to maximize their solvent
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Fig. 7. As in Figure 5, in the fixed mean and variance case.
The asymptotic (β →∞) value is ∆2 ' 0.18 (see Eq. (47)).

Fig. 8. Free energies fa0 , fa1 and fa2 , of the three considered
annealed cases, at varying temperature, with the same λeff ,
and strip width n = 5. While fa0 and fa1 diverge linearly to
−∞ as β →∞, fa2 is constant in the same limit.

contacts, in order to minimize the energy, while the other
fraction has to be very hydrophobic to keep the mean fi-

nite. For entropical reasons the fractions are exactly
1

2
.

This is illustrated in Figure 8, where the free energies are
compared for the various cases for the same values of λ0

and λ.

6.4 Towards the quenched average

So far, we have only fixed overall moments of the type∑
i λ

l
i, l ∈ IN . In this way, we do not impose the λi to

be independent variables. Or equivalently, even if we fix
all the overall moments, the λi still have the complete
freedom to rearrange themselves along the chain. Hence,
we can assume that fixing both mean and variance may
be a good approximation for a hetero-polymer, whose hy-
drophobicities are fixed, but are allowed to migrate. In a
protein, however, not only the hydrophilicities, but also

the positions along the chain are fixed. This corresponds
to the quenched case.

In order to get a reasonable approximation by means
of annealed averages, one should also ensure the inde-
pendence of the λi. A first try might be to impose e.g.
〈
∑
i λiλi+1〉 /N = λ2

0, but after performing the average,
one discovers immediately that this would involve a cou-
pling between all the zi, which, obviously, can not be done
by the TM method. Instead as a first approach, one could
start with〈〈

exp
(
−

1

2

∑
j,k

(λj−λ0)Mjk(λk−λ0)

+
∑
j

λjβ(zj−ĥ)− log(P ({λi})
)〉〉

,

Mjk ≡

∫ 2π

0

dq

2π

exp(iq(j−k))

(ŝ+d̂ cos(q))
· (48)

After performing the average, this results in the following
expression (up to constants)

exp
(β2

2

∑
j,k

(zj − ĥ)M−1
jk (zk − ĥ) + λ0β

∑
j

(zj − ĥ)

+
N

2
log

[
ŝ+

√
ŝ2 − d̂2

])
,

M−1
jk ≡ ŝ δj,k +

d̂

2
(δj,k−1 + δj,k+1). (49)

We have introduced the Lagrange multipliers ĥ, ŝ and

d̂, which combined fix
〈∑

j λj

〉
= Nλ0,

〈∑
j λ

2
j

〉
=

N(λ2
0+λ2), and

〈∑
j>k λjMjkλk

〉
= λ2

0

∑
j>kMjk, which

ensures the independence of a linear combination of the
λj . We expect that fixing the latter, may already qual-
itatively describe the quenched case very well. The only
reason we did not do the numerics of this case, is of a
purely practical nature. In order to calculate 〈

∑
i zizi+1〉,

we have to consider configurations on 3 colums instead
of on 2. This increases the size of the transfer matrix so
drastically that we would have to limit ourselves to very
narrow strip widths. Furthermore, we have an extra self
consistency equation (i.e. for d̂) to solve numerically. All
this makes it unfeasible (in terms of CPU time) for us at
the moment, to perform this calculation for a reasonable
strip width (i.e. ≥ 4).

Nevertheless, one may anticipate that some of the typ-
ical behaviour found for annealed averages, should not
be present for the quenched case. The re-entrant be-
haviour at intermediate temperatures is due to the compe-
tition between the configurational entropy and the energy
on the one hand, and the entropy of the λi distribution
on the other hand. In the quenched case, the entropy
of the λi distribution is absent, and hence re-entrant be-
haviour, if present at all, can not have its origin there.
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The phase separation (in low dimensions) is due to the
possibility for the monomers to rearrange and to form
a hydrophobic compact core. Since this is not possible
for the quenched polymer, we do not expect macroscopic
phase separation in that case. Instead, microscopic phase
separation seems to play an important role for quenched
sequences [9,10]. However, one might expect the quenched
polymer to behave as an effective homo-polymer, where
the groundstate is either swollen or compact, depending
on the value λeff .

7 Discussion of results

We have studied a simple lattice model for a random
hydrophobic-hydrophilic chain in a solvent, with a Gaus-
sian distribution for the hydrophilicities. We have consid-
ered the case of annealed disorder, without constraints,
and with constraints on the first and second moments of
the overall hydrophobicity.

We have obtained both exact analytical results (mainly
at T = 0), and numerical ones, employing the transfer ma-
trix technique on a 2d square lattice. One may ask whether
the 2d results are relevant in 3d too. For example, in the
random sequence model with charge product interaction,
a simple mean field argument shows that d = 2 is a very
peculiar case [30]. For the considered model, analytical
results at the mean field level [7] do not show any quali-
tative difference between different spatial dimensions, and
our exact results at T = 0 exhibit the same qualitative
behavior for any d > 1. Hence, we believe the TM results
in 2d to be meaningful in any dimension d > 1.

We now discuss our results and compare them with
the ones obtained by Garel et al. [7] in the corresponding
continuum model. The main result of [7] is the fact that
the annealed and quenched cases are very similar. They
find that, at sufficiently low temperature, the polymer
is always collapsed, even for hydrophilic chains λ0 > 0.
Depending on the average degree of hydrophobicity, the
transition to the collapsed phase is either first or second
order.

• For the simple annealed case (a0), we have shown
that for any hydrophobicity λ0 > 0 the chain is always
swollen, while for any λ0 < 0, the chain is swollen at
sufficiently low temperature. Using transfer matrix tech-
niques, we have found that, for sufficiently negative λ0,
a temperature interval (T1, T2) exists, where the chain is
collapsed. Coming from the high temperature region the
chain undergoes a standard 2nd order θ-point transition
at T2 (in the same universality class as homo-polymers
[25]). Lowering the temperature further, the chain under-
goes a 1st order (re-entrant) transition at T1 towards the
swollen phase.

Hence, in the annealed case, we come to the opposite
conclusion for the low temperature behavior as predicted
by Garel et al. [7]. Nevertheless, if one takes the incom-
pressibility of the monomer-solvent system properly into
account (i.e. putting an upper bound on the monomer
density), it is possible to recover the same qualitative

picture in the continuum model of [7], too.

• In the annealed case with fixing the mean (a1), we
have found that, for any λeff , there is coexistence of the
swollen and the collapsed phase (phase separation) at suf-
ficiently low temperature, and the chain is exactly half
collapsed and half swollen at T = 0. For λeff < λm, a
temperature interval (T1, T2) exists where the chain is col-
lapsed. At T2 the chain undergoes a 2nd order θ-transition
from the swollen phase, while at T1 a fraction of the chain
swells, and lowering the temperature, the swollen fraction

steadily increases to the T = 0 value
1

2
. For λeff > λm

a temperature T1 exists above which the chain is swollen.
At T1 a fraction of the chain collapses, and lowering the
temperature, the collapsed fraction of the chain increases

steadily to the T = 0 value
1

2
.

As already noted in Section 3, the expressions for the
quenched case of [7] are exactly the same as the ones
we obtain for the continuum model in the case (a1). Us-
ing a one-parameter Gaussian trial wave function for the
monomer density, Garel et al. [7] find a collapsed phase for
any λeff at low temperature. Inspired by the observation
that they in fact describe the case (a1), and by the phase
separation observed in our lattice model, we tried a one-
parameter trial function with a hydrophobic compact core
(fraction fc) and hydrophilic swollen tails (phase separa-
tion). In the low temperature limit, we recover the result

fc =
1

2
, and obtain a free energy that is considerably lower

than the one obtained using the trial function of [7].

Note that the free energy diverges linearly to −∞ for
T → 0, as in the annealed case (see Fig. 8). The same
kind of divergence appears in the quenched free energy
computed in [7], but the quenched free energy should not
diverge at zero temperature.

• In the annealed case with fixed mean and variance
(a2), we have found very similar results as for the case
(a1). The main differences are that the collapsed fraction
of the chain at T = 0 depends on λeff (47), and that the
free energy does not diverge at T = 0. We repeated these
calculations for the continuum model, and again we find
that at T = 0 the phase separation trial function yields
a finite groundstate energy lower than the one obtained
with a Gaussian trial function, and the collapsed fraction
of the chain (fc) is found to be exactly (47).

We conclude that, on the one hand we have good evi-
dence that lattice and continuum models exhibit the same
qualitative behavior, if constrained annealing is consid-
ered. On the other hand, a good equilibrium description
in the case of quenched disorder for this model seems to
be lacking at present, and carrying on the constrained
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annealing approximation procedure (e.g. by fixing corre-
lations between different hydrophilicities, as explained in
the previous section) may be one way to address the prob-
lem of quenched disorder.

We would like to thank H. Orland for stimulating discussions.
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